skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Glass, Ian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Eccrine sweat glands are indispensable for human thermoregulation and, similar to other mammalian skin appendages, form from multipotent epidermal progenitors. Limited understanding of how epidermal progen- itors specialize to form these vital organs has precluded therapeutic efforts toward their regeneration. Herein, we applied single-nucleus transcriptomics to compare the expression content of wild-type, eccrine-forming mouse skin to that of mice harboring a skin-specific disruption of Engrailed 1 (En1), a transcription factor that promotes eccrine gland formation in humans and mice. We identify two concurrent but disproportionate epidermal transcriptomes in the early eccrine anlagen: one that is shared with hair follicles and one that is En1 dependent and eccrine specific. We demonstrate that eccrine development requires the induction of a dermal niche proximal to each developing gland in humans and mice. Our study defines the signatures of eccrine identity and uncovers the eccrine dermal niche, setting the stage for targeted regeneration and comprehensive skin repair. 
    more » « less
  2. null (Ed.)